Science & Research

Jetyak would not exist if it were not for the ingenuity of a community of Scientists, Engineers and Researchers, at the Woods Hole Oceanographic Institution and cooperating partners. 

Collectively, their novel applications drove the inspiration, development and refinement of the Jetyak from prototype vessels to the current developed platform.  A sample of their publications are listed below. If there is an opportunity for collaborative research - reach out - they would be happy to hear from you! 

User Application References 

Coastal Morphology

  1. Jones, K. R. (2018). Measurements and dynamics of multiple scale bedforms in tidally energetic environments (Doctoral dissertation, Massachusetts Institute of Technology). 
  2. Jones, K. R., & Traykovski, P. (2019). Interaction of superimposed megaripples and dunes in a tidally energetic environment. Journal of Coastal Research, 35(5), 948-958.  

Defense & Security

  1. Conway, R. L. (2019). Coordinated tracking and interception of an acoustic target using autonomous surface vehicles (Doctoral dissertation, Massachusetts Institute of Technology).
  2. Traykovski, P., & Austin, T. (2017). Continuous Monitoring of Mobility, Burial and Re exposure of Underwater Munitions in Energetic Near Shore Environments. Woods Hole Oceanographic Institution Woods Hole United States.
  3. Duda, T. F., Manganini, K., Newhall, A. E., Peterson, J. C., Porter, M. B., & Traykovski, P. A. (2020, October). Measurements of Harbor Features and Acoustic Properties. In Global Oceans 2020: Singapore–US Gulf Coast (pp. 1-7). IEEE.
  4. Duda, T. F., Traykovski, P. A., Johnson, J. J., Singh, S., Manganini, K., & Porter, M. B. (2022, October). Measurements of harbor features and underwater acoustic data transmission performance. In OCEANS 2022, Hampton Roads (pp. 1-10). IEEE.
  5. Conway, R. L. (2019). Coordinated tracking and interception of an acoustic target using autonomous surface vehicles (Doctoral dissertation, Massachusetts Institute of Technology)
  6. Fischell, E., Manganini, K., & Plotnick, D. (2019). A low-cost, autonomous surface vehicle-based system for unexploded ordnance bistatic acoustic localization and classification. The Journal of the Acoustical Society of America, 146(4), 2964-2964.


  1. Harvie, M. (2019). Evaluation of the measurement capabilities of an autonomous surface vessel in coastal regions (Doctoral dissertation, The University of Waikato).
  2. Tong, B., Ralston, D. K., Kranenburg, W. M., Geyer, W. R., & Traykovski, P. A. (2021). High and variable drag in a sinuous estuary with intermittent stratification. Earth and Space Science Open Archive ESSOAr.
  3. Alvsvåg, D. M. (2017). Mapping of a seagrass habitat in Hopavågen, Sør-Trøndelag, with the use of an Autonomous Surface Vehicle combined with optical techniques (Master's thesis, NTNU).

Marine Biology

  1. Ludvigsen, M., Berge, J., Geoffroy, M., Cohen, J. H., Pedro, R., Nornes, S. M., ... & Johnsen, G. (2018). Use of an autonomous surface vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Science advances, 4(1), eaap9887.
  2. Acoustic Doppler Aquatic Animal Monitoring Final Report; Luna Sea Solutions Inc., Memorial University of Newfoundland, Dalhousie Ocean Acoustics Laboratory, March 2021

Marine Chemistry

  1. Nicholson, D. P., Michel, A. P., Wankel, S. D., Manganini, K., Sugrue, R. A., Sandwith, Z. O., & Monk, S. A. (2018). Rapid mapping of dissolved methane and carbon dioxide in coastal ecosystems using the ChemYak autonomous surface vehicle. Environmental science & technology, 52(22), 13314-13324.
  2. Michel, A. P., Preston, V. L., Fauria, K. E., & Nicholson, D. P. (2021). Observations of shallow methane bubble emissions from Cascadia Margin. Frontiers in Earth Science, 9, 285.
  3. Manning, C. C., Preston, V. L., Jones, S. F., Michel, A. P., Nicholson, D. P., Duke, P. J., ... & Tortell, P. D. (2020). River inflow dominates methane emissions in an Arctic coastal system. Geophysical Research Letters, 47(10), e2020GL087669.

Enhanced, Augmented & Novel Navigation Methodologies

  1. Meyers, J. C., McCord, T. S., Zhang, Z., & Singh, H. (2022). Towards A COLREGs Compliant Autonomous Surface Vessel in a Constrained Channel. arXiv preprint arXiv:2204.12906.
  2. Tsai, C. M., Lai, Y. H., Perng, J. W., Tsui, I. F., & Chung, Y. J. (2019, April). Design and application of an autonomous surface vehicle with an AI-based sensing capability. In 2019 IEEE Underwater Technology (UT) (pp. 1-4). IEEE.
  3. Pelletier, J. R., O'Neill, B. W., Leonard, J. J., Freitag, L., & Gallimore, E. (2022). AUV-Assisted Diver Navigation. IEEE Robotics and Automation Letters, 7(4), 10208-10215.
  4. Fischell, E. M., Kroo, A. R., & O’Neill, B. W. (2019). Single-hydrophone low-cost underwater vehicle swarming. IEEE Robotics and Automation Letters, 5(2), 354-361.
  5. O’Neill, B. W., Pelletier, J. R., Calvert, S., Papalia, A., Leonard, J. J., Freitag, L., & Gallimore, E. (2022, October). Loosely-Coupled Human-Robot Teams for Enhanced Undersea Operations. In OCEANS 2022, Hampton Roads (pp. 1-8). IEEE. 

Polar Ice

  1. Mankoff, K. D., Straneo, F., Cenedese, C., Das, S. B., Richards, C. G., & Singh, H. (2016). Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord. Journal of Geophysical Research: Oceans, 121(12), 8670-8688.
  2. Observers at the edge of the ice: Smaller, cheaper machines can safely go where humans can't. Naomi Lubick Earth Magazine, Aug 2016